PED2021

10th Pedestrian and Evacuation Dynamics Conference

Melbourne, Australia, November 29-30, 2021

Initiating lane and band formation in heterogeneous pedestrian dynamics

Basma Khelfa¹, Raphael Korbmacher¹, Andreas Schadschneider² and Antoine Tordeux¹

¹University of Wuppertal ²University of Cologne {name}@uni-wuppertal.de as@thp.uni-koeln.de vzu.uni-wuppertal.de thp.uni-koeln.de/as

MADRAS ANR-DFG-NLE Project: www.madras-crowds.eu

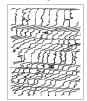
Collective behaviors in pedestrian dynamics

Many examples of collective behaviors in pedestrian dynamics: lane, band, chevron and stripe formation, stop-and-go waves, intermittent flow, etc.

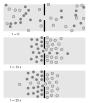

Non-linear effects, phase transition, metastability

D Chowdhury et al. Statistical physics of vehicular traffic and some related systems. Phys Rep 329 (2000)

C Castellano et al. Statistical physics of social dynamics. Rev Mod Phys 81, 591 (2009)


M Boltes et al. Empirical results of pedestrian and evacuation dynamics. Encyclopedia of Complexity & Systems Science (2018)

Objective : Explain macroscopic collective dynamics from microscopic behaviors/interactions



Lane formation

Stop-and-go waves

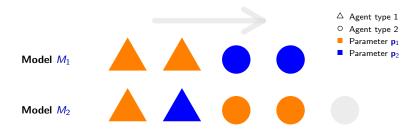
Intermittent flow

Models of heterogeneity

- Agent's motion: Model F (e.g. Social Force model) depending on state variables X (e.g. distances to the neighbours) and parameters p (e.g. maximal speed, agent size)
- Two types k = 1, 2 of agents and two different setting p_1 and p_2 for the model parameters

Models of heterogeneity

- Agent's motion: Model F (e.g. Social Force model) depending on state variables X (e.g. distances to the neighbours) and parameters p (e.g. maximal speed, agent size)
- Two types k = 1, 2 of agents and two different setting p_1 and p_2 for the model parameters


<u>Model 1</u> Heterogeneity of the agents: Static (quenched) attribution of the two parameter setting p_1 and p_2 to the two types of agents

$$M_1(\mathbf{X}, k) = F(\mathbf{X}, \mathbf{p}_k) \tag{1}$$

$$M_2(\mathbf{X}, k) = \begin{cases} F(\mathbf{X}, \mathbf{p}_1), & \text{if } \tilde{k}(\mathbf{X}) = k \\ F(\mathbf{X}, \mathbf{p}_2), & \text{otherwise} \end{cases}$$
(2)

with $\tilde{k}(\mathbf{X})$ the type of the closest agent in front

Models of heterogeneity

The heterogeneity statically relies on the agent type within the model M_1 (quenched disorder) It dynamically depends on the type of the agent in front for the heterogeneity model M_2 (annealed disorder).

Simulation results

b Simulation of uni-directional flows in a $w \times h$ rectangle with periodic boundary conditions

Collision-free model (CFM) — Main parameters:

- Desired speed V maximum scalar speed - Desired time gap T distance/speed ratio agent's radius
- Agent size *l*

• One denotes $\mathbf{p}_1 = (V_1, T_1, \ell_1)$ and $\mathbf{p}_2 = (V_2, T_2, \ell_2)$ the two sets of parameter values.

Models M_1 and M_2 tend respectively to describe lane and band formation as

 $|V_2 - V_1| \gg 0$, $|T_2 - T_1| \gg 0$ or $|\ell_2 - \ell_1| \gg 0$

Online simulation with NetLogo: ►

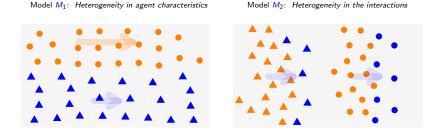
vzu.uni-wuppertal.de/en/simulation-with-netlogo

Monte-Carlo simulation

- Monte-Carlo simulation from random initial positions
- Measurement during one minute of the agent mean speed and mean lane and band order parameters after a simulation time of t₀ = 10 min
 - Order parameter for lane formation:

M Rex & H Löwen, Phys Rev E 75 (2007)

$$\begin{vmatrix} N = \operatorname{card}(m, |y - y_m| < \Delta, k = k_m) \\ \bar{N} = \operatorname{card}(m, |y - y_m| < \Delta, k \neq k_m) \qquad \Phi_L = \Big[\frac{N - \bar{N}}{N + \bar{N}}\Big]^2$$

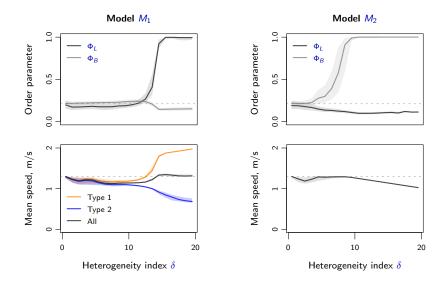

- Order parameter for band formation:

$$\begin{split} M &= \mathsf{card}(m, |\mathsf{x} - \mathsf{x}_m| < \Delta \, w/h, k = k_m) \\ \bar{M} &= \mathsf{card}(m, |\mathsf{x} - \mathsf{x}_m| < \Delta \, w/h, k \neq k_m) \end{split} \qquad \Phi_B = \Big[\frac{M - M}{M + \bar{M}} \Big]^2 \end{split}$$

Starting from the default values (T, V) = (1 s, 1.5 m/s), we vary the time gap T and desired speed V to reproduce an heterogeneity of agent speed characteristics:

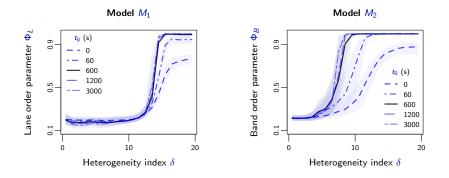
 $T_1 = T + 0.05\delta, \quad T_2 = T - 0.05\delta, \quad V_1 = V - 0.025\delta, \quad V_2 = V + 0.025\delta$ for heterogeneity index $\delta = 0, 1, 2 \dots, 19$.

Order parameter


 $\Phi_L\approx 1$ and $\Phi_B\approx 0$

Self-organisation in lanes

 $\Phi_L\approx 0$ and $\Phi_B\approx 1$


Self-organisation in bands

Phase transition as heterogeneity index increases

Transient states

Lanes and bands emerge during the first minutes of simulation

Robustness against stochastic perturbation

Lane formation: Freezing by heating effect - Band formation: Ordering by noising effect

Summary and work perspectives

Summary

Identification of two heterogeneity mechanisms for mixed traffic

- M1: Static heterogeneity in the agent characteristics
- M_2 : Dynamic heterogeneity in the interaction
- «Universal» mechanisms for the formation of lanes (M_1) or bands (M_2)

 $\rightarrow~$ Features observed with CFM and SFM models and different agent characteristic (desired speed, agent' size, etc.)

Work perspectives

- Analysis of geometries (corridor, bottleneck): segregation effects for slower/bigger agents
- Analytic description of the phase transition
 - Lattice or cellular automaton representation of the model
 - Critical heterogeneity index by means of linear instability of corresponding mean-field solutions
 J Cividini et al. EPI 102(2), 2002 (2013)
 A Della Noce et al. arXiv:1906.01368 (2019)

Thank you for your attention !

Division for Traffic Safety and Reliability School for Mechanical Engineering and Safety Engineering University of Wuppertal

vzu.uni-wuppertal.de